Now we turn to solutions to the 46th Ukrainian Mathematical Olympiad 2006, Final Round, given at [2009 : 23–24].

 ${f 1}$. (V.V. Plakhotnyk) Prove that for any rational numbers a and b the graph of the function

$$f(x) = x^3 - 6abx - 2a^3 - 4b^3, x \in \mathbb{R}$$

has exactly one point in common with the x-axis.

Solved by Matthew Babbitt, home-schooled student, Fort Edward, NY, USA; Michel Bataille, Rouen, France; and Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA, USA. We give Bataille's version.

We will make use of the following result proved at the end: $x^3-3px+2q$

vanishes exactly once for $x \in \mathbb{R}$ if and only if $q^2 > p^3$ or p = q = 0. Here, p = 2ab and $q = -(a^3 + 2b^3)$, hence $q^2 > p^3$ can be rewritten as $(a^3 + 2b^3)^2 > 8a^3b^3$, that is, $(a^3 - 2b^3)^2 > 0$. This is certainly true if $a^3 \neq 2b^3$. However, $a^3 = 2b^3$ cannot occur if $a, b \neq 0$, since otherwise the number 2 would be the cube of a nonzero rational number, which is impossible (if $m^3 = 2n^3$ for positive integers m and n, then a contradiction arises: the exponent of 2 in the standard factorization is a multiple of 3 on the left but not on the right).

Since p=q=0 when a=b=0, the condition $q^2>p^3$ or p=q=0is satisfied for all rational numbers a and b, and the result follows.

We now prove the result used above. Let $P(x) = x^3 - 3px + 2q$. If $p \leq 0$, then for $a, b \in \mathbb{R}$ with $a \neq b$,

$$\frac{P(a) - P(b)}{a - b} = a^2 + ab + b^2 - 3p > 0,$$

hence P is increasing on \mathbb{R} and vanishes only once.

If p>0, then P is increasing on $(-\infty,-\sqrt{p})$ and (\sqrt{p},∞) and decreasing on $(-\sqrt{p}, \sqrt{p})$. An easy calculation gives $P(-\sqrt{p}) = 2(q + p\sqrt{p})$ and $P(\sqrt{p})=2(q-p\sqrt{p})$, so that $P(-\sqrt{p})>P(\sqrt{p})$ and we have that $P(-\sqrt{p})\cdot P(\sqrt{p})=4(q^2-p^3)$. It follows that if $q^2< p^3$, then P vanishes

once in $(-\sqrt{p}, \sqrt{p})$ as well as in $(-\infty, -\sqrt{p})$ and in (\sqrt{p}, ∞) . If $0 < p^3 < q^2$, then $P(-\sqrt{p})$ and $P(\sqrt{p})$ have the same sign and P vanishes only once. Lastly if $p^3 = q^2 \neq 0$, then

$$P(x) = \left(x - \frac{q}{p}\right)^2 \left(x + \frac{2q}{p}\right)$$
,

and P vanishes twice. The required result follows from these observations.

5. (O.O. Kurchenko) Prove that for any real numbers x and y

$$|\cos x| + |\cos y| + |\cos(x+y)| > 1$$
.

Solved by Arkady Alt, San Jose, CA, USA; and Michel Bataille, Rouen, France. We give the argument of Bataille.

Let
$$v = e^{-2ix}$$
 and $w = e^{2iy}$. Then,

$$|1+v| = |e^{-ix}(e^{ix} + e^{-ix})| = |e^{-ix}(2\cos x)| = 2|\cos x|$$

and similarly,

$$|1+w| = 2|\cos y|$$

and

$$|v+w| \ = \ \left|e^{i(y-x)}(e^{i(x+y)}+e^{-i(x+y)})
ight| \ = \ 2|\cos(x+y)| \, .$$

Now, using the Triangle Inequality, we obtain

$$2 = |(1+v) + (1+w) - (v+w)|$$

$$\leq |1+v| + |1+w| + |v+w|$$

$$= 2(|\cos x| + |\cos y| + |\cos(x+y)|),$$

and the result follows.

6. (T.M. Mitelman) Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x^3 + y^3) = x^2 f(x) + y f(y^2)$$

for all real numbers x and y.

Solution by Michel Bataille, Rouen, France.

The solutions are the functions $f_m(x)=mx$, where m a real number. It is readily checked that these functions satisfy the identity. We now show that there are no other solutions. To this aim, let f be any solution. Taking x=y=0 in the identity yields f(0)=0; also, with only y=0, we obtain $f(x^3)=x^2f(x)$, and with only x=0, we obtain $f(y^3)=yf(y^2)$. Thus, for all real numbers x,

$$f(x^3) = x^2 f(x) = x f(x^2)$$
.

From the identity we now obtain $f(x^3 + y^3) = f(x^3) + f(y^3)$. Since any real number is the cube of a real number, it follows that

$$f(a+b) = f(a) + f(b)$$

for all real numbers a and b.

Consequently, f is odd (take b=-a), and f(na)=nf(a) if $n\in\mathbb{Z}$ and $a\in\mathbb{R}$. Substituting x+1 and x-1 for x and y in the identity, we obtain on the one hand

$$f((x+1)^3+(x-1)^3) = f(2x^3+6x) = 2f(x^3)+6f(x) = 2x^2f(x)+6f(x)$$